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The automatic identification of musical instruments is a relatively unexplored and potentially very
important field for its promise to free humans from time-consuming searches on the Internet and
indexing of audio material. Speaker identification techniques have been used in this paper to
determine the properties~features! which are most effective in identifying a statistically significant
number of sounds representing four classes of musical instruments~oboe, sax, clarinet, flute!
excerpted from actual performances. Features examined include cepstral coefficients, constant-Q
coefficients, spectral centroid, autocorrelation coefficients, and moments of the time wave. The
number of these coefficients was varied, and in the case of cepstral coefficients, ten coefficients were
sufficient for identification. Correct identifications of 79%–84% were obtained with cepstral
coefficients, bin-to-bin differences of the constant-Q coefficients, and autocorrelation coefficients;
the latter have not been used previously in either speaker or instrument identification work. These
results depended on the training sounds chosen and the number of clusters used in the calculation.
Comparison to a human perception experiment with sounds produced by the same instruments
indicates that, under these conditions, computers do as well as humans in identifying woodwind
instruments. ©2001 Acoustical Society of America.@DOI: 10.1121/1.1342075#

PACS numbers: 43.60.Gk, 43.75.Cd, 43.75.Ef@JCB#
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I. INTRODUCTION AND BACKGROUND

Despite the massive research which has been carried
on automatic speaker identification, there has been l
work done on the identification of musical instruments
computer. See Brown~1999! for a summary. Applications o
automatic instrument identification include audio indexi
~Wilcox et al., 1994!, automatic transcription~Moorer,
1975!, and Internet search and classification of musical m
terial.

One technique used widely in speaker identificat
studies is pattern recognition. Here, the most important s
is the choice of a set of features which will successfu
differentiate members of a database. Brown~1997, 1998a,
1999! applied this technique to the identification of the ob
and the saxophone using a Gaussian mixture model
cepstral coefficients as features. Included in this referenc
an introduction to pattern recognition and to the method
clusters. Definitions which will be useful for this paper c
be found in the Appendix.

Two later reports on computer identification of music
instruments also use cepstral coefficients as features for
tern recognition. Dubnov and Rodet~1998! used a vector
quantizer as a front end and trained on 18 short exce
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TABLE I. Summary of percent correct for previous human perception experiments on wind instrum
Results for the oboe, sax, clarinet, and flute are given when possible. The final column is the total num
instruments included in the experiment.

Date Oboe Sax Clar Flute Overall Number of instruments

Eagleson/Eagleson 1947 59 45 20 56 9
Saldanha/Corso 1964 75 84 61 41 10
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other study using musical phrases, Kendall~1986! empha-
sized the importance of context and demonstrated that re
on musical phrases were significantly higher than on sin
notes.

More recently, Brown~1997, 1998a, 1998b, 1999! has
found excellent results using multinote segments from ac
musical performances. Martin~1999! has explored both
types of experiments and found more accurate results
multinote segments than with isolated single notes. The
sults of Houix, McAdams, and Brown~unpublished! on mul-
tinote human perception will be compared to our calculatio
in a later section.

In this paper we have used a large database of sou
exerpted from actual performances with the oboe, sa
phone, clarinet, and flute. We present calculations to sho

~i! The accuracy with which computers can be used
identify these very similar instruments;

~ii ! The best signal processing features for this task; a
~iii ! The accuracy compared with experiments on hum

perception.

II. SOUND DATABASE

A. Source and processing

Sounds were excerpted as short segments of solo
sages from compact disks, audio cassettes, and records
the Wellesley College Music Library. This method of samp
collection ensured a selection of typical sounds produced
each instrument, such as might be encountered on Inte
sites or stored audio tapes. At least 25 sounds for each
strument were used to provide statistical reliability for t
results. Features were calculated for 32-ms frames over
ping by 50% and having rms averages greater than 425~for
16-bit samples!.

B. Training and test sets

Sounds of longer duration~1 min or more! representing
each instrument were chosen as training sounds and
given in Table II. These training sounds were varied in
calculations with one sound representing each instrumen
all possible combinations to determine the optimum com
lts
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nation for identification. From Table II, with two, four, three
and four sounds for each of the four instruments, there w
96 combinations.

The constant-Q transforms of the most effective train
sounds are shown in Fig. 1. Both the oboe and flute exam
have strong peaks at a little over 1000 Hz. The oboe has
additional bump at 1200 Hz, giving rise to its nasal quali
The saxophone has a low-frequency spectral-energy distr
tion with a peak around 400 Hz, while the clarinet has le
prominent peaks at around 400 and 900 Hz.

Properties of the test set are given in Table III. T
training sounds were included in the identification calcu
tions but were not included in the calculation of the avera
durations reported here. Two longer flute sounds with du
tions on the order of 40 s were also omitted as their durati
were not representative of the flute data as a whole
skewed the average.
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experiment. Here,m51,2,3,4, and each sound in the test
is assigned to the class which maximizes the probability
this equation.

The values for the features from each frame of a parti
lar sound from the test set were used to calculate the p
ability density of Eq.~3! for each of the four instrumen
t
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FIG. 3. Effect of varying the maximum number of clus
ters with ten cepstral coefficients as features. ‘‘Op
mum’’ gives the percent correct for the optimum choic
of training sounds and number of clusters. The me
and standard deviation are taken over all combinatio
of training sounds and cluster numbers up to the ma
mum. ‘‘Num equiv’’ is the number of combinations
which gave identical optimum results.
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other instruments identified as clarinet occur. Results on
oboe and flute are somewhat poorer. For better overall id
tifications, 18 coefficients would be preferable to ten. T
largest confusions were of the flute as clarinet~26%! and the
oboe as clarinet~19%!. Strong and Clark~1967b! also found
oboe–clarinet confusions.

Results with 25 autocorrelation coefficients were qu
good overall with all identifications of instruments 70%
above. The major confusions were sax–clarinet confusi
of 19% and 24%. Better overall correct identifications we
found for 49 autocorrelation coefficients as seen in Fig.
Here, all diagonal elements are over 75%. Confusions in
range 10%–16% were found for sax as oboe, clarinet as
clarinet as flute, and flute as clarinet.

The results for the bin-to-bin frequency differences we
of particular interest since they are directly related to
spectral smoothness studied by McAdams, Beauchamp,
Meneguzzi~1999!. These are the best overall results, a
unlike the others, clarinet identifications are the best. Thi
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due to the missing even harmonics at the lower end of
spectrum, which make bin-to-bin differences distinctive, a
is consistent with the results of Saldanha and Corso~1964!.
The oboe was identified as a flute almost 30% of the tim
Other confusions were all less than 10%.

For all other feature sets, oboe and sax identificatio
are best overall.

B. Pairs of instruments

The sounds from the four instruments were also co
pared in pairs, as was done for the oboe and sax in Bro
~1999!. Results are given in Fig. 5, which plots percent er
for each of the six pairs along with an overall percent err
As with the four-way calculations, the poorest results we
obtained with spectral centroid, a single number. Again,
best results occurred with bin-to-bin differences
constant-Q coefficients as features. There, the error was o
7% overall. Confusions of the flute with each of the thr
mn
g

ining
was a
TABLE IV. Optimum choice of training sounds for different features for four instrument identification. Colu
one indicates the features. Column two (NW5number of winners! gives the number of combinations of trainin
sounds and clusters which gave optimum results. Column three gives the number of identical~NI! sounds from
column two in which only the number of clusters is different. The last four columns give the optimum tra
sound for each instrument with the range of cluster values in parentheses or simply the number if there
single cluster value.

Features NW NI Oboe Sax Clarinet Flute

10 Cepstral coefficients 3 3 Christ2 Griffin~2–3! Matzener~9–10! Baron2
18 Cepstral coefficients 24 24 Christ~6–10! Griffin~9–10! Goodman10 Baron~7–9!
22 Cepstral coefficients 8 8 Christ~8–10! Griffin~9–10! Goodman10 Baron~5–6!
10 Cepstra—half of sounds 12 12 Christ2 Griffin~2–3! Matzener~9–10! Baron~2–6!
10 Cepstra—other half of sounds 4 4 Christ4 Griffin~6–7!
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V. CONCLUSIONS

The success of cepstral coefficients~77% correct! for
identification indicates that these woodwind instrume
have distinct formant structures and can be categorized
the same techniques used for speaker/speech studies.
tral smoothness~bin-to-bin differences of the constant-Q
spectrum! was also effective~over 80% correct! and indi-
cates a characteristic shape of the spectrum for sounds
duced by these instruments. The success of these featu
due to the property that individual components of their fe
ture vectors are uncorrelated.

The actual numerical percentage correct for these sou
is dependent on the particular training set and numbe
clusters chosen. The choice of training sounds is gener
able for a randomly chosen set of test sounds with abo
10% drop in accuracy.

Most important, several sets of features can be used
computer identification of the oboe, sax, clarinet, and fl
with 75%–85% accuracy. Because a much larger test set
used than in previous studies, the feature sets and met
used are applicable to arbitrary examples of these ins
ments. These results are as good or better than result
human perception and indicate that the computer can d
well as humans on woodwind instrument identification un
the present conditions.

ACKNOWLEDGMENTS

J.C.B. is very grateful to the Marilyn Brachman Hof
man Committee of Wellesley College for a fellowship su
porting this study. Part of this work was carried out during
sabbatical leave by J.C.B. tenured in the Music Percep
and Cognition group at IRCAM and was made possible
Wellesley College’s generous sabbatical leave policy.
nally, thanks go to Peter Cariani for suggesting the use
autocorrelation coefficients as features, and to Dan Ellis
Douglas Reynolds for valuable e-mail discussions.

APPENDIX: TERMS USED IN PATTERN RECOGNITION
AND THE METHOD OF CLUSTERS

Pattern recognition—A method in which a set of un
known patterns called thetest setis grouped into two or
more classesby comparison to atraining setconsisting of
patterns known to belong to each class.

Features—also calledfeature vectors—Properties~the
patterns! calculated for the test set which are compared to
same properties of the training set for classification. In g
eral, a feature hasN associated values and can be conside
an N-dimensional vector, e.g., for autocorrelation coe
cients, each lag time gives one component of the vector

Clustering—a means of summarizing the calculatio
on members of the training set to simplify comparison to
test set. In the calculation described in this paper, a fea
vector is calculated every 16 ms for each training sou
each time contributing a point in anN-dimensional feature
space. These data are summarized by grouping nearby p
into clusterseach with a meanm, standard deviations, and
probability p
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