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The automatic identification of musical instruments is a relatively unexplored and potentially very
important field for its promise to free humans from time-consuming searches on the Internet and
indexing of audio material. Speaker identification techniques have been used in this paper to
determine the propertiegeature$ which are most effective in identifying a statistically significant
number of sounds representing four classes of musical instrumebte, sax, clarinet, flute
excerpted from actual performances. Features examined include cepstral coefficients, constant-Q
coefficients, spectral centroid, autocorrelation coefficients, and moments of the time wave. The
number of these coefficients was varied, and in the case of cepstral coefficients, ten coefficients were
sufficient for identification. Correct identifications of 79%—-84% were obtained with cepstral
coefficients, bin-to-bin differences of the constant-Q coefficients, and autocorrelation coefficients;
the latter have not been used previously in either speaker or instrument identification work. These
results depended on the training sounds chosen and the number of clusters used in the calculation.
Comparison to a human perception experiment with sounds produced by the same instruments
indicates that, under these conditions, computers do as well as humans in identifying woodwind
instruments. ©2001 Acoustical Society of AmericdDOI: 10.1121/1.13420%5

PACS numbers: 43.60.Gk, 43.75.Cd, 43.75. KBt

I. INTRODUCTION AND BACKGROUND

Despite the massive research which has been carried out
on automatic speaker identification, there has been little
work done on the identification of musical instruments by
computer. See Brows1999 for a summary. Applications of
automatic instrument identification include audio indexing
~Wilcox etal, 1994, automatic transcription~Moorer,
1978, and Internet search and classification of musical ma-
terial.

One technique used widely in speaker identification
studies is pattern recognition. Here, the most important step
is the choice of a set of features which will successfully
differentiate members of a database. Brov#®97, 1998a,
1999 applied this technique to the identification of the oboe
and the saxophone using a Gaussian mixture model with
cepstral coefficients as features. Included in this reference is
an introduction to pattern recognition and to the method of
clusters. Definitions which will be useful for this paper can
be found in the Appendix.

Two later reports on computer identification of musical
instruments also use cepstral coefficients as features for pat-
tern recognition. Dubnov and Rodet998 used a vector
guantizer as a front end and trained on 18 short excerpts



TABLE |. Summary of percent correct for previous human perception experiments on wind instruments.
Results for the oboe, sax, clarinet, and flute are given when possible. The final column is the total number of
instruments included in the experiment.

Date Oboe Sax Clar Flute Overall Number of instruments

Eagleson/Eagleson 1947 59 45 20 56 9
Saldanha/Corso 1964 75 84 61 41 10

other study using musical phrases, Kendd®8a@ empha- nation for identification. From Table I, with two, four, three,
sized the importance of context and demonstrated that resulgsd four sounds for each of the four instruments, there were
on musical phrases were significantly higher than on singl®g combinations.

notes. The constant-Q transforms of the most effective training
More recently, Brown-1997, 1998a, 1998b, 1999as  sqnds are shown in Fig. 1. Both the oboe and flute examples

found excellent results using multinote segments from f:lctue“‘,;we strong peaks at a little over 1000 Hz. The oboe has an
musical performances. Martin1999 has explored both dditional bump at 1200 Hz, giving rise to its nasal quality.

types of experiments and found more accurate results wit h h h low-f ral distrib
multinote segments than with isolated single notes. The re- € Saxophone has a low-lrequency spectral-energy distribu-

sults of Houix, McAdams, and Browmunpublishetion mul- tion with a peak around 400 Hz, while the clarinet has less

tinote human perception will be compared to our calculation®rominent peaks at around 400 and 900 Hz.
in a later section. Properties of the test set are given in Table Ill. The
In this paper we have used a large database of soundeining sounds were included in the identification calcula-
exerpted from actual performances with the oboe, saxotions but were not included in the calculation of the average
phone, clarinet, and flute. We present calculations to showdurations reported here. Two longer flute sounds with dura-
Al The accuracy with which computers can be used tdions on the order of 40 s were also omitted as their durations
identify these very similar instruments; were not representative of the flute data as a whole and

-it  The best signal processing features for this task; ancskewed the average.
~iii!l  The accuracy compared with experiments on human
perception.

1. SOUND DATABASE
A. Source and processing

Sounds were excerpted as short segments of solo pas-
sages from compact disks, audio cassettes, and records from
the Wellesley College Music Library. This method of sample
collection ensured a selection of typical sounds produced by
each instrument, such as might be encountered on Internet
sites or stored audio tapes. At least 25 sounds for each in-
strument were used to provide statistical reliability for the
results. Features were calculated for 32-ms frames overlap-
ping by 50% and having rms averages greater than-#25
16-bit samplek

B. Training and test sets

Sounds of longer duratiofl min or moreé representing
each instrument were chosen as training sounds and are
given in Table Il. These training sounds were varied in the
calculations with one sound representing each instrument in
all possible combinations to determine the optimum combi-



Ill. CALCULATIONS

A. Probability calculation



experiment. Heren=1,2,3,4, and each sound in the test set
is assigned to the class which maximizes the probability in
this equation.

The values for the features from each frame of a particu-
lar sound from the test set were used to calculate the prob-
ability density of Eq.~3! for each of the four instrument
classes. That sound was then assigned to the class for which
this function was a maximum. After this was done for each
of the sounds, a four-by-four confusion matrix was computed
showing what percent of each of the test sounds in each of






FIG. 3. Effect of varying the maximum number of clus-
ters with ten cepstral coefficients as features. “Opti-
mum” gives the percent correct for the optimum choice
of training sounds and number of clusters. The mean
and standard deviation are taken over all combinations
of training sounds and cluster numbers up to the maxi-
mum. “Num equiv” is the number of combinations
which gave identical optimum results.

other instruments identified as clarinet occur. Results on thdue to the missing even harmonics at the lower end of the

oboe and flute are somewhat poorer. For better overall iderspectrum, which make bin-to-bin differences distinctive, and

tifications, 18 coefficients would be preferable to ten. Theis consistent with the results of Saldanha and Cot964.

largest confusions were of the flute as claritg8% and the  The oboe was identified as a flute almost 30% of the time.

oboe as clarinetl9%!. Strong and Clark1967H also found  Other confusions were all less than 10%.

oboe—clarinet confusions. For all other feature sets, oboe and sax identifications
Results with 25 autocorrelation coefficients were quiteare best overall.

good overall with all identifications of instruments 70% or

above. The major confusions were sax—clarinet confusiong Pairs of instruments

of 19% and 24%. Better overall correct identifications were™"

found for 49 autocorrelation coefficients as seen in Fig. 4.  The sounds from the four instruments were also com-

Here, all diagonal elements are over 75%. Confusions in theared in pairs, as was done for the oboe and sax in Brown

range 10%—16% were found for sax as oboe, clarinet as sax1999. Results are given in Fig. 5, which plots percent error

clarinet as flute, and flute as clarinet. for each of the six pairs along with an overall percent error.
The results for the bin-to-bin frequency differences wereAs with the four-way calculations, the poorest results were

of particular interest since they are directly related to theobtained with spectral centroid, a single number. Again, the

spectral smoothness studied by McAdams, Beauchamp, armbst results occurred with bin-to-bin differences of

Meneguzzi~1999. These are the best overall results, andconstantq) coefficients as features. There, the error was only

unlike the others, clarinet identifications are the best. This i¥% overall. Confusions of the flute with each of the three

TABLE IV. Optimum choice of training sounds for different features for four instrument identification. Column
one indicates the features. Column two (N\WWumber of winnersgives the number of combinations of training
sounds and clusters which gave optimum results. Column three gives the number of idéhtisaunds from

column two in which only the number of clusters is different. The last four columns give the optimum training
sound for each instrument with the range of cluster values in parentheses or simply the number if there was a
single cluster value.

Features NW NI Oboe Sax Clarinet Flute
10 Cepstral coefficients 3 3 Christ2 Grifl+-3  Matzener9—-10 Baron2
18 Cepstral coefficients 24 24 Chrgt1ld Griffin~9-10 Goodmanl0 Baroii—9
22 Cepstral coefficients 8 8 Chrigt-10Q Griffin~9—10 Goodmanl0 Baros—6l
10 Cepstra—half of sounds 12 12 Christ2 Grifird Matzener9-10 Baron2-6

10 Cepstra—other half of sounds 4 4  Christ4 Grihin 7







V. CONCLUSIONS

The success of cepstral coefficien®&/% correct for
identification indicates that these woodwind instruments
have distinct formant structures and can be categorized with
the same techniques used for speaker/speech studies. Spec-
tral smoothnessbin-to-bin differences of the constaft-
spectrunh was also effectiveover 80% corredtand indi-
cates a characteristic shape of the spectrum for sounds pro-
duced by these instruments. The success of these features is
due to the property that individual components of their fea-
ture vectors are uncorrelated.

The actual numerical percentage correct for these sounds
is dependent on the particular training set and number of
clusters chosen. The choice of training sounds is generaliz-
able for a randomly chosen set of test sounds with about a
10% drop in accuracy.

Most important, several sets of features can be used for
computer identification of the oboe, sax, clarinet, and flute
with 75%—-85% accuracy. Because a much larger test set was
used than in previous studies, the feature sets and methods
used are applicable to arbitrary examples of these instru-
ments. These results are as good or better than results on
human perception and indicate that the computer can do as
well as humans on woodwind instrument identification under
the present conditions.
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APPENDIX: TERMS USED IN PATTERN RECOGNITION
AND THE METHOD OF CLUSTERS

Pattern recognition—A method in which a set of un-
known patterns called theest setis grouped into two or
more classesby comparison to draining setconsisting of
patterns known to belong to each class.

Features—also calledfeature vectors-Properties-the
patterns calculated for the test set which are compared to the
same properties of the training set for classification. In gen-
eral, a feature hald associated values and can be considered
an N-dimensional vector, e.g., for autocorrelation coeffi-
cients, each lag time gives one component of the vector.

Clustering—a means of summarizing the calculations
on members of the training set to simplify comparison to the
test set. In the calculation described in this paper, a feature
vector is calculated every 16 ms for each training sound,
each time contributing a point in ax-dimensional feature
space. These data are summarized by grouping nearby points
into clusterseach with a meam, standard deviatios, and
probability p
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