91Ë¿¹ÏÊÓƵ

Major Biology and Mathematics (76 credits)

Note: This is the 2016–2017 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.

Offered by: Biology     Degree: Bachelor of Science

Program Requirements

This program is built on a selection of mathematics and biology courses that recognize mathematical biology as a field of research, with three streams within biology: Ecology and Evolutionary Ecology, Molecular Evolution, and Neurosciences.

Advising notes for U0 students:

It is highly recommended that freshman BIOL, CHEM, MATH, and PHYS courses be selected with the Program Adviser to ensure they meet the core requirements of the program.

This program is recommended for U1 students achieving a CGPA of 3.2 or better, and entering CEGEP students with a Math/Science R-score of 28.0 or better.

Required Courses (34 credits)

* If a student has already taken CHEM 212 or its equivalent, the credits can be made up with a complementary course in consultation with the Program Adviser.
** Students who have sufficient knowledge in a programming language should take COMP 250 (3 credits) "Introduction to Computer Science" rather than COMP 202.
*** Students may take either MATH 223 or MATH 247.

  • BIOL 200 Molecular Biology (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : The physical and chemical properties of the cell and its components in relation to their structure and function. Topics include: protein structure, enzymes and enzyme kinetics; nucleic acid replication, transcription and translation; the genetic code, mutation, recombination, and regulation of gene expression.

    Terms: Fall 2016

    Instructors: Zetka, Monique; Hastings, Kenneth E M; Roy, Richard D W; Lasko, Paul; Reyes Lamothe, Rodrigo (Fall)

    • Fall

    • 3 hours lecture, 1 hour optional tutorial

    • Prerequisite: BIOL 112 or equivalent

    • Corequisite: CHEM 212 or equivalent

  • BIOL 201 Cell Biology and Metabolism (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : This course introduces the student to our modern understanding of cells and how they work. Major topics to be covered include: photosynthesis, energy metabolism and metabolic integration; plasma membrane including secretion, endocytosis and contact mediated interactions between cells; cytoskeleton including cell and organelle movement; the nervous system; hormone signaling; the cell cycle.

    Terms: Winter 2017

    Instructors: Brouhard, Gary (Winter)

    • Winter

    • 3 hours lecture, 1 hour optional tutorial

    • Prerequisite: BIOL 200.

    • Restriction: Not open to students who have taken or are taking ANAT 212 or BIOC 212

  • BIOL 215 Introduction to Ecology and Evolution (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : An introduction to the fundamental processes of ecology and evolution that bear on the nature and diversity of organisms and the processes that govern their assembly into ecological communities and their roles in ecosystem function.

    Terms: Fall 2016

    Instructors: Potvin, Catherine; Abouheif, Ehab (Fall)

    • Fall

    • 3 hours lecture

    • Prerequisite: BIOL 111

    • Restriction: Not open to students who have taken ENVR 202

  • CHEM 212 Introductory Organic Chemistry 1 (4 credits) *

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : A survey of reactions of aliphatic and aromatic compounds including modern concepts of bonding, mechanisms, conformational analysis, and stereochemistry.

    Terms: Fall 2016, Winter 2017, Summer 2017

    Instructors: Daoust, Michel; Gauthier, Jean-Marc; Huot, Mitchell; Sleiman, Hanadi; Pavelka, Laura (Fall) Lumb, Jean-Philip; Pavelka, Laura; Daoust, Michel; Gauthier, Jean-Marc (Winter) Pavelka, Laura; Daoust, Michel (Summer)

    • Fall, Winter, Summer

    • Prerequisite: CHEM 110 or equivalent.

    • Corequisite: CHEM 120 or equivalent.

    • Restriction: Not open to students who are taking or have taken CHEM 211 or equivalent

    • Each lab section is limited enrolment

    • Note: Some CEGEP programs provide equivalency for this course. For more information, please see the Department of Chemistry's Web page ().

  • COMP 202 Foundations of Programming (3 credits) **

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Introduction to computer programming in a high level language: variables, expressions, primitive types, methods, conditionals, loops. Introduction to algorithms, data structures (arrays, strings), modular software design, libraries, file input/output, debugging, exception handling. Selected topics.

    Terms: Fall 2016, Winter 2017, Summer 2017

    Instructors: Siddiqi, Kaleem; Lyman-Abramovitch, Melanie; Pomerantz, Daniel (Fall) Lyman-Abramovitch, Melanie; Oakes, Bentley; Alberini, Giulia (Winter) Becerra Romero, David (Summer)

    • 3 hours

    • Prerequisite: a CEGEP level mathematics course

    • Restrictions: COMP 202 and COMP 208 cannot both be taken for credit. COMP 202 is intended as a general introductory course, while COMP 208 is intended for students interested in scientific computation. COMP 202 cannot be taken for credit with or after COMP 250

  • MATH 222 Calculus 3 (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Taylor series, Taylor's theorem in one and several variables. Review of vector geometry. Partial differentiation, directional derivative. Extreme of functions of 2 or 3 variables. Parametric curves and arc length. Polar and spherical coordinates. Multiple integrals.

    Terms: Fall 2016, Winter 2017, Summer 2017

    Instructors: Drury, Stephen W; Fox, Thomas F (Fall) Garver, Alexander (Winter) McGregor, Geoffrey (Summer)

  • MATH 223 Linear Algebra (3 credits) ***

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Review of matrix algebra, determinants and systems of linear equations. Vector spaces, linear operators and their matrix representations, orthogonality. Eigenvalues and eigenvectors, diagonalization of Hermitian matrices. Applications.

    Terms: Fall 2016, Winter 2017

    Instructors: Nica, Bogdan Lucian (Fall) Pichot, Michael (Winter)

    • Fall and Winter

    • Prerequisite: MATH 133 or equivalent

    • Restriction: Not open to students in Mathematics programs nor to students who have taken or are taking MATH 236, MATH 247 or MATH 251. It is open to students in Faculty Programs

  • MATH 242 Analysis 1 (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : A rigorous presentation of sequences and of real numbers and basic properties of continuous and differentiable functions on the real line.

    Terms: Fall 2016

    Instructors: Hundemer, Axel W (Fall)

    • Fall

    • Prerequisite: MATH 141

    • Restriction(s): Not open to students who are taking or who have taken MATH 254.

  • MATH 243 Analysis 2 (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Definition and properties of Riemann integral, Fundamental Theorem of Calculus, Taylor's theorem. Infinite series: alternating, telescoping series, rearrangements, conditional and absolute convergence, convergence tests. Power series and Taylor series. Elementary functions. Introduction to metric spaces.

    Terms: Winter 2017

    Instructors: Hundemer, Axel W (Winter)

  • MATH 247 Honours Applied Linear Algebra (3 credits) ***

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Matrix algebra, determinants, systems of linear equations. Abstract vector spaces, inner product spaces, Fourier series. Linear transformations and their matrix representations. Eigenvalues and eigenvectors, diagonalizable and defective matrices, positive definite and semidefinite matrices. Quadratic and Hermitian forms, generalized eigenvalue problems, simultaneous reduction of quadratic forms. Applications.

    Terms: Winter 2017

    Instructors: Hundemer, Axel W (Winter)

    • Winter

    • Prerequisite: MATH 133 or equivalent.

    • Restriction: Intended for Honours Physics and Engineering students

    • Restriction: Not open to students who have taken or are taking MATH 236, MATH 223 or MATH 251

  • MATH 315 Ordinary Differential Equations (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : First order ordinary differential equations including elementary numerical methods. Linear differential equations. Laplace transforms. Series solutions.

    Terms: Fall 2016, Winter 2017, Summer 2017

    Instructors: Lu, Xinyang (Fall) Mitry, John (Winter) Roth, Charles (Summer)

    • Prerequisite: MATH 222.

    • Corequisite: MATH 133.

    • Restriction: Not open to students who have taken or are taking MATH 325.

  • MATH 323 Probability (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Sample space, events, conditional probability, independence of events, Bayes' Theorem. Basic combinatorial probability, random variables, discrete and continuous univariate and multivariate distributions. Independence of random variables. Inequalities, weak law of large numbers, central limit theorem.

    Terms: Fall 2016, Winter 2017, Summer 2017

    Instructors: Asgharian-Dastenaei, Masoud (Fall) Sen, Sanchayan (Winter) Kelome, Djivede (Summer)

    • Prerequisites: MATH 141 or equivalent.

    • Restriction: Intended for students in Science, Engineering and related disciplines, who have had differential and integral calculus

    • Restriction: Not open to students who have taken or are taking MATH 356

Complementary Courses (42 credits)

For the 42 credits, students complete 24 credits of BIOL, NEUR, PHGY, PSYC courses including one of three streams (Ecology and Evolutionary Ecology, Molecular Evolution, Neurosciences) and 18 credits of MATH courses.

Math or Biology Research Course

Note: Students selecting a BIOL course count this toward their 24 credits of BIOL, NEUR, PHGY, PSYC courses while students selecting a MATH course count this toward their 18 credits of MATH courses.

3 credits from the following Math or Biology research courses:

  • BIOL 466 Independent Research Project 1 (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Independent research project.

    Terms: Fall 2016, Winter 2017, Summer 2017

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

    • Fall, Winter or Summer

    • Prerequisite: BIOL 206 or BIOL 301 or other suitable laboratory course.

    • Restrictions: Open only to Biology students. Not open to students who have taken BIOL 477.

    • Projects must be arranged individually with a staff member of the Biology Department and a form from Nancy Nelson, Room W3/25, Stewart Building, must be completed prior to registration.

  • BIOL 467 Independent Research Project 2 (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Independent research project.

    Terms: Fall 2016, Winter 2017, Summer 2017

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

    • Fall, Winter or Summer

    • Prerequisite: BIOL 206 or BIOL 301 or other suitable laboratory course.

    • Restrictions: Open only to Biology students. Not open to students who have taken BIOL 478.

    • Projects must be arranged individually with a staff member of the Biology Department and a form from Nancy Nelson, Room W3/25, Stewart Building, must be completed prior to registration.

  • MATH 410 Majors Project (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : A supervised project.

    Terms: Fall 2016, Winter 2017, Summer 2017

    Instructors: Kelome, Djivede; Yang, Yi; Nave, Jean-Christophe; Tsogtgerel, Gantumur; Stephens, David (Fall) Kelome, Djivede; Tsogtgerel, Gantumur; Yang, Yi (Winter) Kelome, Djivede; Asgharian-Dastenaei, Masoud; Steele, Russell (Summer)

    • Prerequisite: Students must have 21 completed credits of the required mathematics courses in their program, including all required 200 level mathematics courses.

    • Requires departmental approval.

Of the remaining complementary courses, at least 6 credits must be at the 400 level or above.

Math Courses

15 credits (if MATH 410 was selected as a research course) or 18 credits of MATH courses chosen from Sequence 1 or 2 and from "Remaining Math Courses" as follows:

Sequence 1: Theory

12 credits from the following courses:

* Students may take either MATH 317 or MATH 327.

  • MATH 314 Advanced Calculus (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Derivative as a matrix. Chain rule. Implicit functions. Constrained maxima and minima. Jacobians. Multiple integration. Line and surface integrals. Theorems of Green, Stokes and Gauss. Fourier series with applications.

    Terms: Fall 2016, Winter 2017

    Instructors: Roth, Charles (Fall) Drury, Stephen W (Winter)

  • MATH 317 Numerical Analysis (3 credits) *

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Error analysis. Numerical solutions of equations by iteration. Interpolation. Numerical differentiation and integration. Introduction to numerical solutions of differential equations.

    Terms: Fall 2016

    Instructors: Saldanha Salvador, Tiago Miguel (Fall)

  • MATH 319 Introduction to Partial Differential Equations (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : First order equations, geometric theory; second order equations, classification; Laplace, wave and heat equations, Sturm-Liouville theory, Fourier series, boundary and initial value problems.

    Terms: Winter 2017

    Instructors: Bartello, Peter (Winter)

  • MATH 326 Nonlinear Dynamics and Chaos (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Linear systems of differential equations, linear stability theory. Nonlinear systems: existence and uniqueness, numerical methods, one and two dimensional flows, phase space, limit cycles, Poincare-Bendixson theorem, bifurcations, Hopf bifurcation, the Lorenz equations and chaos.

    Terms: Fall 2016

    Instructors: Humphries, Antony Raymond (Fall)

  • MATH 327 Matrix Numerical Analysis (3 credits) *

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : An overview of numerical methods for linear algebra applications and their analysis. Problem classes include linear systems, least squares problems and eigenvalue problems.

    Terms: Winter 2017

    Instructors: Panayotov, Ivo (Winter)

Sequence 2: Statistics

9 credits from the following:

  • MATH 324 Statistics (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Sampling distributions, point and interval estimation, hypothesis testing, analysis of variance, contingency tables, nonparametric inference, regression, Bayesian inference.

    Terms: Fall 2016, Winter 2017

    Instructors: Côté, Marie-Pier (Fall) Asgharian-Dastenaei, Masoud (Winter)

    • Fall and Winter

    • Prerequisite: MATH 323 or equivalent

    • Restriction: Not open to students who have taken or are taking MATH 357

    • You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.

  • MATH 423 Regression and Analysis of Variance (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Least-squares estimators and their properties. Analysis of variance. Linear models with general covariance. Multivariate normal and chi-squared distributions; quadratic forms. General linear hypothesis: F-test and t-test. Prediction and confidence intervals. Transformations and residual plot. Balanced designs.

    Terms: Fall 2016

    Instructors: Stephens, David (Fall)

  • MATH 447 Introduction to Stochastic Processes (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Conditional probability and conditional expectation, generating functions. Branching processes and random walk. Markov chains, transition matrices, classification of states, ergodic theorem, examples. Birth and death processes, queueing theory.

    Terms: Winter 2017

    Instructors: Wolfson, David B (Winter)

    • Winter

    • Prerequisite: MATH 323

    • Restriction: Not open to students who have taken or are taking MATH 547.

Remaining Math Courses

Remaining 3-9 credits of MATH courses may be chosen from any of the two preceding sequences and/or from the following list:

  • MATH 204 Principles of Statistics 2 (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : The concept of degrees of freedom and the analysis of variability. Planning of experiments. Experimental designs. Polynomial and multiple regressions. Statistical computer packages (no previous computing experience is needed). General statistical procedures requiring few assumptions about the probability model.

    Terms: Winter 2017

    Instructors: Correa, Jose Andres (Winter)

    • Winter

    • Prerequisite: MATH 203 or equivalent. No calculus prerequisites

    • Restriction: This course is intended for students in all disciplines. For extensive course restrictions covering statistics courses see Section 3.6.1 of the Arts and of the Science sections of the calendar regarding course overlaps.

    • You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.

  • MATH 340 Discrete Structures 2 (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Review of mathematical writing, proof techniques, graph theory and counting. Mathematical logic. Graph connectivity, planar graphs and colouring. Probability and graphs. Introductory group theory, isomorphisms and automorphisms of graphs. Enumeration and listing.

    Terms: Winter 2017

    Instructors: Norin, Sergey (Winter)

  • MATH 437 Mathematical Methods in Biology (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : The formulation and treatment of realistic mathematical models describing biological phenomena through qualitative and quantitative mathematical techniques (e.g. local and global stability theory, bifurcation analysis and phase plane analysis) and numerical simulation. Concrete and detailed examples will be drawn from molecular and cellular biology and mammalian physiology.

    Terms: Winter 2017

    Instructors: Khadra, Anmar (Winter)

  • MATH 523 Generalized Linear Models (4 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Modern discrete data analysis. Exponential families, orthogonality, link functions. Inference and model selection using analysis of deviance. Shrinkage (Bayesian, frequentist viewpoints). Smoothing. Residuals. Quasi-likelihood. Contingency tables: logistic regression, log-linear models. Censored data. Applications to current problems in medicine, biological and physical sciences. R software.

    Terms: Winter 2017

    Instructors: Steele, Russell (Winter)

    • Winter

    • Prerequisite: MATH 423

    • Restriction: Not open to students who have taken MATH 426

  • MATH 524 Nonparametric Statistics (4 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Distribution free procedures for 2-sample problem: Wilcoxon rank sum, Siegel-Tukey, Smirnov tests. Shift model: power and estimation. Single sample procedures: Sign, Wilcoxon signed rank tests. Nonparametric ANOVA: Kruskal-Wallis, Friedman tests. Association: Spearman's rank correlation, Kendall's tau. Goodness of fit: Pearson's chi-square, likelihood ratio, Kolmogorov-Smirnov tests. Statistical software packages used.

    Terms: Fall 2016

    Instructors: Wolfson, David B (Fall)

    • Fall

    • Prerequisite: MATH 324 or equivalent

    • Restriction: Not open to students who have taken MATH 424

  • MATH 525 Sampling Theory and Applications (4 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Simple random sampling, domains, ratio and regression estimators, superpopulation models, stratified sampling, optimal stratification, cluster sampling, sampling with unequal probabilities, multistage sampling, complex surveys, nonresponse.

    Terms: Winter 2017

    Instructors: Steele, Russell (Winter)

    • Prerequisite: MATH 324 or equivalent

    • Restriction: Not open to students who have taken MATH 425

BIOL, NEUR, PHGY, PHYS, PSYC Courses

21 credits (if BIOL course was selected as a research course) or 24 credits of BIOL, NEUR, PHGY, PHYS, PSYC courses including one of three streams.

Note: Some courses in the streams may have prerequisites.

Ecology and Evolutionary Ecology Stream

At least 15 credits selected as follows:

3 credits of:

  • BIOL 206 Methods in Biology of Organisms (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Introduction to modern methods used in organismal biology, including ecological sampling, experimental methods and statistics, taxonomic and phylogenetic analysis of biodiversity, experimental behavioural ecology, microbiological methods, and library search procedures.

    Terms: Fall 2016

    Instructors: Cristescu, Elena; Miller-Nesbitt, Andrea; Lefebvre, Louis (Fall)

    • Fall

    • 1.5 hours lecture, 3 hours laboratory and local field trip in week 1

    • Prerequisite: BIOL 111 or equivalent

3 credits from the following field courses or any other field course with permission:

  • BIOL 240 Monteregian Flora (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Field studies of ferns, fern allies, conifers and flowering plants; the use of keys for plant identification.

    Terms: Summer 2017

    Instructors: Millien, Virginie; Lapointe, Melanie (Summer)

    • Prerequisite: BIOL 111 or permission

    • Restriction: Not open to students who have taken PLNT 358

    • Note: Taught at the Gault Nature Reserve. Contact instructor for specific dates, logistics: (virginie.millien [at] mcgill.ca).

    • This course is offered in the summer.

    • This course, given at the University’s Gault Nature Reserve in Mont St. Hilaire, has an additional fee of $421.55 which includes a hand lens, a textbook, handouts, lodging and supper each day.

  • BIOL 331 Ecology/Behaviour Field Course (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Methods of sampling natural populations. Testing hypotheses in nature.

    Terms: Fall 2016

    Instructors: Lechowicz, Martin J; Reader, Simon; Reddon, Adam (Fall)

    • Fall

    • Prerequisites: BIOL 206 and BIOL 215

    • Note: Preregistration in March and April. See Course web page: . Meets 12-days just before the fall term, with a project report early in the fall term.

    • The field portion of this course is given at the University's Gault Nature Reserve in Mont St. Hilaire over a two-week period in August. In the fall, students prepare a report based on projects carried out during this field portion. This course has an additional fee of $571.30 which includes room and board and handouts. The Department of Biology subsidizes a portion of the cost for this activity.

  • BIOL 334D1 Applied Tropical Ecology (1.5 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Relevant to agriculture, forestry, fisheries and conservation of natural resources. Field component taught at the University's Bellairs Research Institute in Barbados, for two weeks in early May. The course is organized in a series of small-group field projects of 2-3 days each. Interested students should check the course website, attend the full information session and fill out an application form.

    Terms: Winter 2017

    Instructors: Guichard, Frederic; Bureau, Thomas E; Leung, Brian (Winter)

  • BIOL 334D2 Applied Tropical Ecology (1.5 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : See BIOL 334D1 for course description.

    Terms: Summer 2017

    Instructors: Guichard, Frederic; Bureau, Thomas E; Leung, Brian (Summer)

    • Winter, Summer

    • Prerequisites: BIOL 206; and BIOL 215 or both ENVR 200 and ENVR 202; and permission of the instructor.

    • Students must register for both BIOL 334D1 and BIOL 334D2.

    • No credit will be given for this course unless both BIOL 334D1 and BIOL 334D2 are successfully completed in consecutive terms

    • This course, given in Barbados, has an additional fee of $1,551.05 to cover the costs of room and board at Bellairs Research Institute, the course pack and all other expenses during the course. It does not cover tuition, airfare, flight insurance, airport taxes, meals in transit, or the cost of supplementary health insurance. The fee is only refundable prior to the deadline to withdraw with full refund.

  • BIOL 432 Limnology (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : A study of the physical, chemical and biological properties of lakes and other inland waters, with emphasis on their functioning as systems.

    Terms: Fall 2016

    Instructors: Gregory-Eaves, Irene; Fussmann, Gregor (Fall)

    • Fall

    • 2 hours lecture; 2 weekends at field station equivalent to 3 hours laboratory per week

    • Prerequisites: BIOL 206 and BIOL 215 or permission of instructor.

    • 4 This course, involving two field weekends, has an additional fee of $304.50, which includes room and board and transportation. The fee is refundable during the period where a student can drop the course with full refund. The Department of Biology subsidizes a portion of the cost for this activity.

    • Restrictions: Not open to students who have taken or are taking ENVB 315.

  • BIOL 573 Vertebrate Palaeontology Field Course (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Terrestrial vertebrate fossils (i.e. dinosaurs, crocodiles and other reptiles) and palaeocommunity analysis, including practical training with fossil identification, mapping, collecting, and stratigraphic interpretation.

    Terms: Summer 2017

    Instructors: Larsson, Hans Carl (Summer)

    • Summer

    • Prerequisites: BIOL 304 and BIOL 352 or permission of instructor.

    • Notes: Spring field course with completed project and presentation by the end of the Summer. Given in a selected Late Cretaceous Alberta and/or Saskatchewan site. Enrolment limited to 15 students.

    • This course, given at selected localities in Alberta and/or Saskatchewan in May, has an additional fee of $1053.88 which includes room and board, museum entrance fees, and transportation during the course, but not tuition or transportation to western Canada. The fee is refundable during the period where a student can drop the course with full refund.

    • This course is offered in the summer.

At least 9 credits chosen from the following list, of which 6 credits must be at the 400 level or above:

  • BIOL 202 Basic Genetics (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Introduction to basic principles, and to modern advances, problems and applications in the genetics of higher and lower organisms with examples representative of the biological sciences.

    Terms: Winter 2017, Summer 2017

    Instructors: Moon, Nam Sung; Nilson, Laura; Schoen, Daniel J (Winter) Dankort, David; Hipfner, David (Summer)

    • Winter, Summer

    • 3 hours lecture, 1 hour optional tutorial

    • Prerequisite: BIOL 200.

    • Restriction: Not open to students who have taken or are taking LSCI 204.

  • BIOL 205 Biology of Organisms (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Unified view of form and function in animals and plants. Focus on how the laws of chemistry and physics illuminate biological processes relating to the acquisition of energy and materials and their use in movement, growth, development, reproduction and responses to environmental stress.

    Terms: Winter 2017

    Instructors: Dhindsa, Rajinder S (Winter)

  • BIOL 304 Evolution (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : This course will show how the theory of evolution by natural selection provides the basis for understanding the whole of biology. The first half of the course describes the process of selection, while the second deals with evolution in the long term.

    Terms: Fall 2016

    Instructors: Abouheif, Ehab; Larsson, Hans Carl; Hendry, Andrew (Fall)

  • BIOL 305 Animal Diversity (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : The characteristics of the major groups of animals, their ancestry, history and relationship to one another. The processes of speciation, adaptive radiation and extinction responsible for diversity. Methods for constructing of phylogenies, for comparing phenotypes, and for estimating and analyzing diversity.

    Terms: Winter 2017

    Instructors: Barrett, Rowan; Larsson, Hans Carl; Green, David M; Bell, Graham (Winter)

  • BIOL 308 Ecological Dynamics (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Principles of population, community, and ecosystem dynamics: population growth and regulation, species interactions, dynamics of competitive interactions and of predator/prey systems; evolutionary dynamics.

    Terms: Fall 2016

    Instructors: Guichard, Frederic (Fall)

  • BIOL 310 Biodiversity and Ecosystems (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Ecological bases of the natural causes and consequences of current global environmental changes, including how biodiversity and ecosystem processes are defined and measured, how they vary in space and time, how they are affected by physical and biological factors, and how they affect each other and human societies.

    Terms: Winter 2017

    Instructors: Davies, Thomas; Gray, Heather; Marleau, Justin (Winter)

    • Winter

    • 3 hours lecture

    • one-day field trip to Mont St-Hilaire

    • Prerequisite: BIOL 215; or ENVR 200 and ENVR 202; MATH 112 or equivalent; or permission of the instructor

  • BIOL 324 Ecological Genetics (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : This course presents evolutionary genetics within an ecological context. The course covers theoretical topics together with relevant data from natural populations of plants and animals.

    Terms: This course is not scheduled for the 2016-2017 academic year.

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

    • Fall

    • 2 hours lecture, 1 hour seminar

    • Prerequisite: BIOL 202

  • BIOL 434 Theoretical Ecology (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Study of theoretical ecology and of mathematical tools available to explore the dynamical behaviour of model populations, communities and ecosystems. Models addressing major ecological theories including population stability, community dynamics and ecosystem functioning, epidemic and disturbance dynamics, spatial models, game theory.

    Terms: This course is not scheduled for the 2016-2017 academic year.

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

    • Winter

    • 3 hours lecture

    • Prerequisites: BIOL 308 or BIOL 309 or permission of instructor.

  • BIOL 466 Independent Research Project 1 (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Independent research project.

    Terms: Fall 2016, Winter 2017, Summer 2017

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

    • Fall, Winter or Summer

    • Prerequisite: BIOL 206 or BIOL 301 or other suitable laboratory course.

    • Restrictions: Open only to Biology students. Not open to students who have taken BIOL 477.

    • Projects must be arranged individually with a staff member of the Biology Department and a form from Nancy Nelson, Room W3/25, Stewart Building, must be completed prior to registration.

  • BIOL 467 Independent Research Project 2 (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Independent research project.

    Terms: Fall 2016, Winter 2017, Summer 2017

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

    • Fall, Winter or Summer

    • Prerequisite: BIOL 206 or BIOL 301 or other suitable laboratory course.

    • Restrictions: Open only to Biology students. Not open to students who have taken BIOL 478.

    • Projects must be arranged individually with a staff member of the Biology Department and a form from Nancy Nelson, Room W3/25, Stewart Building, must be completed prior to registration.

  • BIOL 468 Independent Research Project 3 (6 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Independent research project.

    Terms: Fall 2016, Winter 2017, Summer 2017

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

    • Fall, Winter or Summer

    • Prerequisite: BIOL 206 or BIOL 301 or other suitable laboratory course

    • Restriction: Open only to Biology students. Not open to students who have taken BIOL 471 or BIOL 471D1/D2.

    • Projects must be arranged individually with a staff member of the Biology Department and a form from Nancy Nelson, Room W3/25, Stewart Building, must be completed prior to registration.

  • BIOL 509 Methods in Molecular Ecology (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : An overview of the molecular genetic tools used to investigate ecological and evolutionary processes in natural populations. The use of molecular tools in studies of population structure, parentage, kinship, species boundaries, phylogenetics. Special topics include conservation genetics, population genetics, and ecological genomics.

    Terms: This course is not scheduled for the 2016-2017 academic year.

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

    • Restriction (s): BIOL 301, BIOL 304 and BIOL 308 or permission of instructor.

    • Intended for both upper level undergraduates with knowledge of ecology, evolution, and genetics.

    • Intended for graduate students interested in applying molecular tools in ecology, evolution, and environmental sciences.

  • BIOL 569 Developmental Evolution (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : The influence of developmental mechanisms on evolution. This course draws on recent examples from plants and invertebrate and vertebrate animals. Topics include homology, modularity, dissociation, co-option, evolutionary novelty, evolution of cis-regulation and gene regulatory networks, developmental constraint and evolvability, heterochrony, phenotypic plasticity, and canalization.

    Terms: Winter 2017

    Instructors: Larsson, Hans Carl; Abouheif, Ehab (Winter)

    • Winter

    • 3 hours lecture

    • Prerequisites: BIOL 303 and BIOL 304; or permission of instructor.

  • BIOL 594 Advanced Evolutionary Ecology (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Evolutionary ecology is the study of evolutionary change in natural populations. General predictive approaches in evolutionary ecology, including population genetics, quantitative genetics, optimality, and game theory will be examined. Emphasis will be placed on the mathematical underpinnings of each approach, particularly as they relate to classic and contemporary problems.

    Terms: Fall 2016

    Instructors: Hendry, Andrew (Fall)

Molecular Evolution Stream

At least 16 credits selected as follows:

7 credits from:

  • BIOL 202 Basic Genetics (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Introduction to basic principles, and to modern advances, problems and applications in the genetics of higher and lower organisms with examples representative of the biological sciences.

    Terms: Winter 2017, Summer 2017

    Instructors: Moon, Nam Sung; Nilson, Laura; Schoen, Daniel J (Winter) Dankort, David; Hipfner, David (Summer)

    • Winter, Summer

    • 3 hours lecture, 1 hour optional tutorial

    • Prerequisite: BIOL 200.

    • Restriction: Not open to students who have taken or are taking LSCI 204.

  • BIOL 301 Cell and Molecular Laboratory (4 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : An introduction to laboratory techniques with a focus on methods used to investigate fundamental questions in modern cell and molecular biology. Techniques including gene cloning, DNA and protein isolation and manipulation are covered, along with functional analysis of genes and proteins, basic bioinformatics, and computer-based experimental design and data analysis.

    Terms: Fall 2016, Winter 2017

    Instructors: Zheng, Huanquan; Harrison, Paul; Reyes Lamothe, Rodrigo (Fall) Zheng, Huanquan; Harrison, Paul; Reyes Lamothe, Rodrigo (Winter)

    • Fall or Winter

    • 1 hour lecture and one 6-hour laboratory

    • Prerequisites: PHYS 102 or PHYS 142, BIOL 200, BIOL 201 or ANAT/BIOC 212, and BIOL 202. BIOL 206 recommended.

    • Restrictions: Not open to students who have taken or are taking BIOC 300. Requires departmental approval.

    • For approval email anne-marie.sdicu [at] mcgill.ca. Specify your ID number as well as the term and two lab day preferences.

At least 9 credits selected from the following list, of which 6 credits must be at the 400 level or above.

  • BIOL 303 Developmental Biology (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : A consideration of the fundamental processes and principles operating during embryogenesis. Experimental analyses at the molecular, cellular, and organismal levels will be presented and discussed to provide an overall appreciation of developmental phenomena.

    Terms: Winter 2017

    Instructors: Hendricks, Shelton; Rao, Yong; Dufort, Daniel (Winter)

  • BIOL 304 Evolution (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : This course will show how the theory of evolution by natural selection provides the basis for understanding the whole of biology. The first half of the course describes the process of selection, while the second deals with evolution in the long term.

    Terms: Fall 2016

    Instructors: Abouheif, Ehab; Larsson, Hans Carl; Hendry, Andrew (Fall)

  • BIOL 313 Eukaryotic Cell Biology (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Cell biology of eukaryotes focusing on the assembly and function of cellular structures, the regulation of transcription; the dynamics of the cytoskeleton and its motors; mechanics of cell division; cell cycle and checkpoints; nuclear dynamics; chromosome structure and behaviour and experimental techniques.

    Terms: Winter 2017

    Instructors: Zetka, Monique; Weber, Stephanie (Winter)

  • BIOL 466 Independent Research Project 1 (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Independent research project.

    Terms: Fall 2016, Winter 2017, Summer 2017

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

    • Fall, Winter or Summer

    • Prerequisite: BIOL 206 or BIOL 301 or other suitable laboratory course.

    • Restrictions: Open only to Biology students. Not open to students who have taken BIOL 477.

    • Projects must be arranged individually with a staff member of the Biology Department and a form from Nancy Nelson, Room W3/25, Stewart Building, must be completed prior to registration.

  • BIOL 467 Independent Research Project 2 (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Independent research project.

    Terms: Fall 2016, Winter 2017, Summer 2017

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

    • Fall, Winter or Summer

    • Prerequisite: BIOL 206 or BIOL 301 or other suitable laboratory course.

    • Restrictions: Open only to Biology students. Not open to students who have taken BIOL 478.

    • Projects must be arranged individually with a staff member of the Biology Department and a form from Nancy Nelson, Room W3/25, Stewart Building, must be completed prior to registration.

  • BIOL 468 Independent Research Project 3 (6 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Independent research project.

    Terms: Fall 2016, Winter 2017, Summer 2017

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

    • Fall, Winter or Summer

    • Prerequisite: BIOL 206 or BIOL 301 or other suitable laboratory course

    • Restriction: Open only to Biology students. Not open to students who have taken BIOL 471 or BIOL 471D1/D2.

    • Projects must be arranged individually with a staff member of the Biology Department and a form from Nancy Nelson, Room W3/25, Stewart Building, must be completed prior to registration.

  • BIOL 518 Advanced Topics in Cell Biology (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Concepts and mechanisms in advanced cell biology, based on genetic, cell biological, biophysical, and computational studies. Emphasis is placed on processes that are evolutionarily conserved, with examples from model organisms and cell-free (in vitro) approaches.

    Terms: Winter 2017

    Instructors: Harrison, Paul; Reyes Lamothe, Rodrigo (Winter)

    • Winter

    • 3 hours seminar

    • Prerequisite: BIOL 313 or permission

  • BIOL 569 Developmental Evolution (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : The influence of developmental mechanisms on evolution. This course draws on recent examples from plants and invertebrate and vertebrate animals. Topics include homology, modularity, dissociation, co-option, evolutionary novelty, evolution of cis-regulation and gene regulatory networks, developmental constraint and evolvability, heterochrony, phenotypic plasticity, and canalization.

    Terms: Winter 2017

    Instructors: Larsson, Hans Carl; Abouheif, Ehab (Winter)

    • Winter

    • 3 hours lecture

    • Prerequisites: BIOL 303 and BIOL 304; or permission of instructor.

  • BIOL 592 Integrated Bioinformatics (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : 'Post-genomic' bioinformatics. Concepts behind large-scale computational analysis and comparison of genomes/proteomes (and beyond), and the implications for our understanding of the basic processes of molecular and cell biology and the evolution of those processes.

    Terms: Fall 2016

    Instructors: Harrison, Paul (Fall)

    • Fall

    • 3 hours lecture

    • Prerequisite: BIOL 301 or permission of instructor.

    • Restriction: Not open to students who have taken or are taking BINF 511.

Neurosciences Stream

At least 15 credits selected as follows:

3 credits from:

At least 12 credits selected from:

  • BIOL 320 Evolution of Brain and Behaviour (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Functional and comparative approach to neuroanatomy, examining how species changes in brain organization contribute to evolutionary changes in behaviour.

    Terms: Winter 2017

    Instructors: Woolley, Sarah; Sakata, Jon (Winter)

    • Winter

    • 2 hours of lecture and 1 hour of conference (mandatory)

    • Prerequisite: NSCI 201 or BIOL 306

  • BIOL 389 Laboratory in Neurobiology (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Methods of neurobiological research, including extracellular and intracellular recordings, electrical stimulation, and the study of neuro-behavioural problems.

    Terms: Winter 2017

    Instructors: Watt, Alanna; Hendricks, Shelton; Oyama, Tomoko (Winter)

  • BIOL 466 Independent Research Project 1 (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Independent research project.

    Terms: Fall 2016, Winter 2017, Summer 2017

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

    • Fall, Winter or Summer

    • Prerequisite: BIOL 206 or BIOL 301 or other suitable laboratory course.

    • Restrictions: Open only to Biology students. Not open to students who have taken BIOL 477.

    • Projects must be arranged individually with a staff member of the Biology Department and a form from Nancy Nelson, Room W3/25, Stewart Building, must be completed prior to registration.

  • BIOL 467 Independent Research Project 2 (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Independent research project.

    Terms: Fall 2016, Winter 2017, Summer 2017

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

    • Fall, Winter or Summer

    • Prerequisite: BIOL 206 or BIOL 301 or other suitable laboratory course.

    • Restrictions: Open only to Biology students. Not open to students who have taken BIOL 478.

    • Projects must be arranged individually with a staff member of the Biology Department and a form from Nancy Nelson, Room W3/25, Stewart Building, must be completed prior to registration.

  • BIOL 468 Independent Research Project 3 (6 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Independent research project.

    Terms: Fall 2016, Winter 2017, Summer 2017

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

    • Fall, Winter or Summer

    • Prerequisite: BIOL 206 or BIOL 301 or other suitable laboratory course

    • Restriction: Open only to Biology students. Not open to students who have taken BIOL 471 or BIOL 471D1/D2.

    • Projects must be arranged individually with a staff member of the Biology Department and a form from Nancy Nelson, Room W3/25, Stewart Building, must be completed prior to registration.

  • BIOL 530 Advances in Neuroethology (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : Neural mechanisms underlying behaviour in vertebrate and invertebrate organisms.

    Terms: Winter 2017

    Instructors: Woolley, Sarah (Winter)

  • BIOL 580 Genetic Approaches to Neural Systems (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : This course will focus on recent research employing genetic-based methods to examine the functional and structural properties of the nervous system. The focus will be on approaches for studying neural circuits and behavior in a range of model organisms. Topics will include recent technological advances, such as optogenetics for modifying and controlling neuronal activity, and animal models of neurological diseases. Students will critically analyze the application of these methods to current research through in-class discussion of primary literature, student presentations, and written assignments.

    Terms: Fall 2016

    Instructors: Hendricks, Shelton; Watt, Alanna (Fall)

    • Prerequisite(s): BIOL 306 or permission of the instructors.

  • NEUR 310 Cellular Neurobiology (3 credits)

    Offered by: Neurology and Neurosurgery (Faculty of Science)

    Overview

    Neurology and Neurosurgery : A survey of the functional organization of nerve cells, signalling in the nervous system, and principles of neural development. Topics include cell polarity, neurotransmitters, neurotrophins, receptors and second messengers, cell lineage, guidance of axon outgrowth, and nerve regeneration. Emphasis will be placed on analysis of neurons at the molecular level.

    Terms: Winter 2017

    Instructors: Cloutier, Jean-Francois; Ragsdale, David S; Kennedy, Timothy E (Winter)

  • NEUR 507 Topics in Radionuclide Imaging (3 credits)

    Offered by: Neurology and Neurosurgery (Faculty of Medicine and Health Sciences)

    Overview

    Neurology and Neurosurgery : The course deals with neuroreceptor and oncologic imaging and imaging of cerebral bloodflow and metabolism. The role of radiochemistry and physics will be demonstrated in the context of clinical and research applications. Understanding how radiochemistry and physics intermingle with the medical aspects of radiotracer development will result in a deeper insight into the complex pathways of tracer design and the methods necessary to properly interpret the data obtained.

    Terms: Fall 2016

    Instructors: Kostikov, Alexey; Thiel, Alexander (Fall)

    • Fall

    • Restriction: Not open to students who have taken NEUR 607.

  • NEUR 570 Human Brain Imaging (3 credits)

    Offered by: Neurology and Neurosurgery (Faculty of Medicine and Health Sciences)

    Overview

    Neurology and Neurosurgery : Current methods that are used to investigate human brain structure and function will be discussed with an emphasis on Magnetic Resonance-based techniques including functional Magnetic Resonance Imaging, Magnetic Resonance Spectroscopy, and Diffusion Tensor Imaging.

    Terms: This course is not scheduled for the 2016-2017 academic year.

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

    • Prerequisite: Permission of the instructor.

    • Restriction: Students must be enrolled in the Integrated Program in Neuroscience (IPN) graduate program at 91Ë¿¹ÏÊÓƵ. 91Ë¿¹ÏÊÓƵ students enrolled in other graduate programs as well as undergraduate students and students from other universities are encouraged to apply and should contact the course instructors.

    • Contact hours: by appointment - please contact any of the responsible instructors by email

  • PHGY 314 Integrative Neuroscience (3 credits)

    Offered by: Physiology (Faculty of Science)

    Overview

    Physiology : In depth presentation of experimental results and hypotheses underlying our current understanding of how single neurons and ensembles of neurons encode sensory information, generate movement, and control cognitive functions such as emotion, learning, and memory, during voluntary behaviours.

    Terms: Fall 2016

    Instructors: Chacron, Maurice; Sharif Naeini, Reza; Cook, Erik (Fall)

    • Fall

    • 3 hours of lectures per week

    • Prerequisites: PHGY 209

  • PHGY 425 Analyzing Physiological Systems (3 credits)

    Offered by: Physiology (Faculty of Science)

    Overview

    Physiology : An introduction to quantitative analysis of physiological data, both to the mode of thinking and to a set of tools that allows accurate predictions of biological systems. Examples will range from oscillating genetic networks to understanding higher brain function. Modelling and data analysis through examples and exercises will be emphasized.

    Terms: Fall 2016

    Instructors: Cook, Erik; Glavinovic, Mladen I; Chacron, Maurice (Fall)

  • PHGY 552 Cellular and Molecular Physiology (3 credits)

    Offered by: Physiology (Faculty of Science)

    Overview

    Physiology : Discussions of recent significant advances in our understanding of the gene products involved in diverse cellular signalling pathways. Topics will include cell-surface hormone receptors, nuclear steroid hormone receptors, and ion channels and transporters. Students will present and critically evaluate experimental approaches, results and interpretations of selected research publications.

    Terms: Winter 2017

    Instructors: Orlowski, John; White, John H; Stochaj, Ursula (Winter)

    • Winter

    • 1 hour lecture, 2 hours seminar weekly

    • Prerequisite: PHGY 311

    • Preference will be given to Physiology Honours and Graduate students

  • PSYC 427 Sensorimotor Behaviour (3 credits)

    Offered by: Psychology (Faculty of Science)

    Overview

    Psychology : A systematic examination of the sensorimotor system, drawing on models and data from both behavioural and physiological studies. Topics include: cortical motor areas, cerebellum, basal ganglia, spinal mechanisms, motor unit properties and force production, prioception, muscle properties.

    Terms: Winter 2017

    Instructors: Ostry, David J (Winter)

    • Winter

    • 2 lectures

    • Prerequisite: PSYC 308 or permission of instructor

  • PSYT 455 Neurochemistry (3 credits)

    Offered by: Psychiatry (Faculty of Science)

    Overview

    Psychiatry : Covers biochemical mechanisms underlying central nervous system function. Introduces basic neuroanatomy, CNS cell types and morphology, neuronal excitability, chemically mediated transmission, glial function. Biochemistry of specific neurotransmitters, endocrine effects on brain, brain energy metabolism and cerebral ischemia (stroke). With examples, where relevant, of biochemical processes disrupted in human CNS disease.

    Terms: Winter 2017

    Instructors: Flores Parkman, Ana Cecilia; Chakravarty, Megha; Wong, Tak Pan (Winter)

  • PSYT 502 Brain Evolution and Psychiatry (3 credits)

    Offered by: Psychiatry (Faculty of Science)

    Overview

    Psychiatry : The course will focus on the transcendental importance of evolution of nervous systems for normal and pathological behaviour. Studies of allomeric brain growth and recent evolutionary theories of brain organization as they relate to normal and abnormal behaviour will be emphasized.

    Terms: This course is not scheduled for the 2016-2017 academic year.

    Instructors: There are no professors associated with this course for the 2016-2017 academic year.

    • Fall

    • Prerequisites: BIOL 115 or equivalent as authorized by instructor

Remaining BIOL, NEUR, PHGY, PSYC

For the remaining BIOL, NEUR, PHGY, PSYC complementary course credits, if any, students top up their credits to the necessary 21-24 credits with any course listed in the above three streams. Other relevant courses may be substituted with the approval of the Program Adviser.

Faculty of Science—2016-2017 (last updated Aug. 26, 2016) (disclaimer)
Back to top